首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量机的压印字符识别方法
引用本文:李国平,路长厚,李健美. 基于最小二乘支持向量机的压印字符识别方法[J]. 上海大学学报(自然科学版), 2007, 13(2): 125-129
作者姓名:李国平  路长厚  李健美
作者单位:山东大学,机械学院,济南,250061;济南大学,机械学院,济南,250022;山东大学,机械学院,济南,250061
基金项目:高等学校博士学科点专项科研项目
摘    要:将最小二乘支持向量机引入到小字符集压印字符识别中.首先介绍最小二乘支持向量机的基本原理和主要算法,然后在实验中采用最小二乘支持向量机训练软件,针对标牌上的压印字符的数字集进行仿真,同时与神经网络等其他分类方法进行比较.实验结果表明此方法的识别率较高,在小字符集识别中具有较强的实用性.

关 键 词:最小二乘支持向量机  压印字符  字符识别
文章编号:1007-2861(2007)02-0125-05
收稿时间:2006-04-25
修稿时间:2006-04-25

Pressed Protuberant Character Recognition Based on Least Squares Support Vector Machines
LI Guo-ping,LU Chang-hou,LI Jian-mei. Pressed Protuberant Character Recognition Based on Least Squares Support Vector Machines[J]. Journal of Shanghai University(Natural Science), 2007, 13(2): 125-129
Authors:LI Guo-ping  LU Chang-hou  LI Jian-mei
Affiliation:1. School of Mechanical Engineering, Shandong University, Jinan 250061, China; 2. School of Mechanical Engineering, University of Jinan, Jinan 250022, China
Abstract:This paper presents an application of least squares support vector machines in small-set pressed protuberant character recognition.The theory and algorithms of least squares support vector machines are introduced.Least squares support vector machines are used to train the software in the experiment for simulation of labels' pressed protuberant characters,and compare with the results of neural network classification,et al.Experiment results show that the least squares support vector machines method has high recognition rate and is practical.
Keywords:least squares support vector machines   pressed protuberant characters   character recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《上海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《上海大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号