首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群优化算法在多参数拟合中的应用
引用本文:杨朝霞,方健文,李佳蓉,曾胜财. 粒子群优化算法在多参数拟合中的应用[J]. 浙江师范大学学报(自然科学版), 2008, 31(2): 173-177
作者姓名:杨朝霞  方健文  李佳蓉  曾胜财
作者单位:浙江师范大学,数理与信息工程学院,浙江,金华,321004
基金项目:国家自然科学基金 , 浙江省自然科学基金
摘    要:提出一种新的自适应粒子群优化算法,以解决梯度法为基础的算法在进行多参数拟合时因各参数之间相关性较高而带来的拟合上的问题.该粒子群优化算法采用自适应变异和动态自适应调整搜索范围、惯性权重相结合的改进策略,数值模拟了将该算法应用于测量薄膜热物性时的多参数拟合,结果表明该算法是可行和有效的.

关 键 词:粒子群  多参数拟合  相关性  惯性权重  自适应变异
文章编号:1001-5051(2008)02-0173-05
修稿时间:2007-10-15

Application of particle swarm optimization to multiparameters fitting
YANG Zhaoxia,FANG Jianwen,LI Jiarong,ZENG Shengcai. Application of particle swarm optimization to multiparameters fitting[J]. Journal of Zhejiang Normal University Natural Sciences, 2008, 31(2): 173-177
Authors:YANG Zhaoxia  FANG Jianwen  LI Jiarong  ZENG Shengcai
Affiliation:( College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua Zhejiang 321004, China)
Abstract:In order to make up the deficit of fitting strong correlation parameters with gradient-based methods, a new adaptive particle swarm algorithm was proposed. A modified strategy was developed by combining a new adaptive mutation and an adaptive adjustment inertia weight, searching regions in the algorithm. The new algo- rithm was used to simulate numerically the multiparameter fitting in the process of characterizing thermal properties of thin films. It was showed that the new algorithm was feasible and efficient
Keywords:particle swarm  multiparameter fitting  correlation  inertia weight  adaptive mutation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号