摘 要: | 设G为一个平面图,V(G),E(G),F(G),δ(G)和Δ(G)分别表示G的顶点集合、边集合、面集合、顶点最小度和最大度.NG(u)为点u在G中的邻集,G[S]为G中由SV(G)导出的子图.G中的一个3圈C3称为G的一个分离三角形,如果C3的内部和外部均含有V(G)V(C3)中的顶点.G的边面全色数χef(G)是使得集合E(G)∪F(G)中的相邻或相关联的元素均染为不同色的最少颜色数.由定义,χef(G)≥Δ(G)是显然的.另一方面,Melnikov猜想[1]:对任何简单平面图G,χef(G)≤Δ(G) 3.文献[2,3]给出了下面结果:定理1 若G为Δ(G…
|