摘 要: | 针对传统融合方法信息缺失较多与连续性较差等问题,提出了一种基于非下采样双树复轮廓波变换(NSDTCT)与稀疏表示的红外和微光图像融合方法。利用NSDTCT进行多尺度分解获得低频成分和高频子带成分,引入稀疏表示理论,构建低频成分和高频成分的融合模型,将图像融合分别转化为对应稀疏编码的融合,低频和高频成分稀疏表示系数分别根据加权平均和多方向对比度准则进行融合。进行对比实验,选用平均梯度(AG)、标准差(STD)、互信息(MI)、边缘保持度(QAB/F)、结构相似度(SSIM)这5种客观指标,结果较传统方法分别提升2.1%、3.3%、16.1%、6.6%、8.5%以上,表明该方法能够有效保留红外微光图像信息,提高融合图像连续性和成像质量。
|