摘 要: | 基于稀疏恢复的多输入多输出(multiple input multiple output, MIMO)雷达波形分离方法,能够代替匹配滤波,提高MIMO雷达非理想正交波形分离效果,对目标高分辨成像。但由于目标像稀疏性较弱,多观测向量(multiple measurement vector, MMV)稀疏恢复算法的效果有限。通过调整感知矩阵发掘目标像的块稀疏性,提出了一种基于块稀疏的MMV稀疏重构算法来提高成像质量。首先采用改进的复合三角函数(improved composite trigonometric function, ICTF)作为平滑函数近似l0范数,然后将其扩展到基于块稀疏的MMV模型,最后通过自适应调整正则化参数提升算法稳健性。通过实验验证了该算法在不同稀疏度、不同信噪比下的重构性能,仿真分析了其应用于MIMO雷达对多散射点目标模型的成像效果。仿真结果表明,所提算法能够更好地提高成像质量。
|