首页 | 本学科首页   官方微博 | 高级检索  
     

基于残差网络的高温合金微观组织图像分割方法
引用本文:张利欣,车世界,徐正光,付超,袁立,边胜琴. 基于残差网络的高温合金微观组织图像分割方法[J]. 科学技术与工程, 2020, 20(1): 246-251
作者姓名:张利欣  车世界  徐正光  付超  袁立  边胜琴
作者单位:北京科技大学自动化学院,北京 100083;北京科技大学新金属材料国家重点实验室,北京 100083;北京科技大学计算机学院,北京 100083
基金项目:国家重点基础研究发展计划(973计划),国家高技术研究发展计划(863计划)
摘    要:材料微观组织图像分析是材料研究的重要环节,其分析方法的精准性和快速性对新材料的设计、研制和现有材料的优化、寿命评价都非常重要。因此,如何建立更快速更精准的微观组织分割方法成为微观组织图像分析和性能评价的关键。针对传统的微观组织图像分割技术对于高温合金材料分析精度不高等问题,通过对卷积神经网络结构进行优化,提出了一种基于Res_Unet网络的微观组织图像分割方法。实验验证结果表明,本文的方法不仅解决了深度学习在材料组织图像小样本数据上的实现问题,还显著提高了材料微观组织图像的分割精度。

关 键 词:深度学习  高温合金  小样本  图像分割
收稿时间:2019-05-14
修稿时间:2019-09-09

Study on the Microstructure Images Segmentation Method of Superalloy Based on Res-Unet
Zhang Lixin,Che Shijie,Xu Zhengguang,Fu Chao,Yuan Li,Bian Shengqin. Study on the Microstructure Images Segmentation Method of Superalloy Based on Res-Unet[J]. Science Technology and Engineering, 2020, 20(1): 246-251
Authors:Zhang Lixin  Che Shijie  Xu Zhengguang  Fu Chao  Yuan Li  Bian Shengqin
Affiliation:School of Automation and Electrical Engineering ,University of Science & Technology Beijing,,,,,
Abstract:Analyzing material microstructure images is an important part of researching material performance. The accuracy and celerity of analysis methods have an important impact on the design and development of new materials, the optimization of current materials and the evaluation of their life. Therefore, how to establish a faster and more accurate microstructure segmenting method becomes the key for analyzing microstructure images and evaluating performance. Aiming at the problem that the traditional microstructure image segmenting technology is not accurate for analyzing Ni-based superalloy, this paper optimizes convolutional neural network and proposes a microstructure image segmenting method based on Res_Unet network. It also integrates network improvement and data enhancement in the meantime. Through the experiment to Ni-based superalloy microstructure image, the result shows that this method solves how to actualize deep learning on the small sample data of material structure images and significantly improves the segmenting accuracy of material microstructure images.
Keywords:Ni-based  superalloy, deep  learning, small  sample, image  segmentation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号