首页 | 本学科首页   官方微博 | 高级检索  
     

最大(小)公约(倍)数相等的刻画
引用本文:刘英,王路群,李凤霞,刘冬丽. 最大(小)公约(倍)数相等的刻画[J]. 高师理科学刊, 2011, 31(3): 27-29. DOI: 10.3969/j.issn.1007-9831.2011.03.008
作者姓名:刘英  王路群  李凤霞  刘冬丽
作者单位:哈尔滨师范大学,恒星学院,信息科学系,黑龙江,哈尔滨,150025
基金项目:黑龙江省高等学校教改工程项目(一般项目序号96)
摘    要:利用整数可逆矩阵给出了2组整数的最大公约数与最小公倍数分别对应相等的判别定理,得到主要结果为:设ai,bi∈Z(i=1,…,n,n∈Z+,n≥2),则(1)gcd{a1,…,an}=gcd{b1,…,bn}当且仅当存在n阶整数可逆矩阵P,使得(a1,…,an)P=(b1,…,bn),其中:gcd{c1,…,cn}表示整...

关 键 词:最大公约数  最小公倍数  可逆矩阵  初等矩阵

The depiction of the greatest(smallest)common divisor(multiple)'s equality
LIU Ying,WANG Lu-qun,LI Feng-xia,LIU Dong-li. The depiction of the greatest(smallest)common divisor(multiple)'s equality[J]. Journal of Science of Teachers'College and University, 2011, 31(3): 27-29. DOI: 10.3969/j.issn.1007-9831.2011.03.008
Authors:LIU Ying  WANG Lu-qun  LI Feng-xia  LIU Dong-li
Affiliation:LIU Ying,WANG Lu-qun,LI Feng-xia,LIU Dong-li(Department of Information Science,Star College,Harbin Normal University,Harbin 150025,China)
Abstract:By using of integral invertible matrix gave discriminant theorem for the corresponding equality of the greatest(smallest)common divisor(multiple)of two groups of integerst.he main conclusion as followl,etai,bi∈ Z(i=1,…,n,n∈Z +,n≥ 2),then(1)gcd{a1,…,an} =gcd{b1,…,bn } if and only if there exists ann×n integral invertible matrixP which satisfy(a1,…,an)P=(b1,…,bn),wheregcd{ c1,…,cn } is the greatest common divisor of integers c1,…,cn;(2)[a1,…,an ]=[b1,…,bn ] if and only if there exists ann × n integral invertible matrixQ which satisfy b1…bn(M1,…,Mn)Q =a1…an(N1,…,Nn),whereaiMi=a1…an,biN i=b1…bn,andaibi≠ 0(i=1,…,n).
Keywords:greatest common divisor  smallest common multiple  invertible matrix  elementary matrix  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号