首页 | 本学科首页   官方微博 | 高级检索  
     

语音识别和说话人识别中各倒谱分量的相对重要性
引用本文:甄斌,吴玺宏,刘志敏,迟惠生. 语音识别和说话人识别中各倒谱分量的相对重要性[J]. 北京大学学报(自然科学版), 2001, 37(3): 371-378
作者姓名:甄斌  吴玺宏  刘志敏  迟惠生
作者单位:北京大学信息科学中心,100871,北京
基金项目:国家自然科学基金;69635050;
摘    要:采用增减特征分量的方法研究了MFCC各维倒谱分量对说话人识别和语音识别的贡献。使用DTW测度,在标准英文数字语音库上的实验表明,最有用的语音信息包含在MFCC分量C1C12之间,最有用的说话人信息包含在MFCC分量C2C16之间。MFCC分量C0C1包含有负作用的说话人信息,将其作为特征会引起识别率的降低。低阶MFCC分量较高阶分量更容易受加性噪声和卷积噪声干扰。

关 键 词:MFCC  说话人识别  语音识别  
收稿时间:2000-04-05

On the Importance of Components of the MFCC in Speech and Speaker Recognition
ZHEN Bin,WU Xihong,LIU Zhimin,CHI Huisheng. On the Importance of Components of the MFCC in Speech and Speaker Recognition[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(3): 371-378
Authors:ZHEN Bin  WU Xihong  LIU Zhimin  CHI Huisheng
Affiliation:Center for Information Science, Peking University, Beijing, 100871
Abstract:The analysis of the relative importance of components of MFCC for both speech recognition and speaker recognition using DTW recognizer in various noise environments are given.For English digit and under the Euclidean distance definition,the experiment results show cepstral components from C 2 to C 16 contain the most useful speaker information,while C 0 and C 1 are usually harm to speaker recognition.Cepstral terms from C 1 to C 12 are found to contain the most useful speech information.In both tasks,the additive noise decreases the relative importance of low MFCC terms faster than that of the middle and high MFCC terms,and the decrement depends on the speech SNR.The channel distortion will deteriorate low terms more than the middle and high MFCC terms in both tasks,also.
Keywords:MFCC  speech recognition  speaker recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号