首页 | 本学科首页   官方微博 | 高级检索  
     

基于对象传播神经网络的音频水印算法
引用本文:戴红亮,金文标. 基于对象传播神经网络的音频水印算法[J]. 重庆邮电大学学报(自然科学版), 2009, 21(1): 95-99
作者姓名:戴红亮  金文标
作者单位:重庆邮电大学,计算机科学与技术学院,重庆,400065;重庆邮电大学,计算机科学与技术学院,重庆,400065
摘    要:提出了一种基于对象传播神经网络的音频水印算法。算法将水印的嵌入和提取转换为对象传播神经网络(CPN)的训练和回想,由于水印的提取依赖于CPN输入的统计特性,因此选用具有较强稳定性的小波低频系数方差作为输入向量训练CPN。实验结果表明,该算法在抵抗常规音频信号处理和去同步攻击方面具有较好的鲁棒性。

关 键 词:数字水印  音频水印  对象传播神经网络  去同步攻击
收稿时间:2008-08-14

Audio watermarking algorithm based on counter propagation neural network
DAI Hong-liang,JIN Wen-biao. Audio watermarking algorithm based on counter propagation neural network[J]. Journal of Chongqing University of Posts and Telecommunications, 2009, 21(1): 95-99
Authors:DAI Hong-liang  JIN Wen-biao
Affiliation:College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, P.R. China
Abstract:A novel CPN-based audio watermarking algorithm was proposed. The watermark embedding procedure and extracting procedure were integrated into the proposed CPN. Since the watermark extraction depends on the stable statistical properties of the input of CPN, the variance of low frequency wavelet coefficients with high stability servers as the input vector of CPN in the algorithm to preserve the watermark from various common signal processing and desynchronization attack. Experiments validate the robust of the proposed scheme.
Keywords:digital watermarking   digital audio watermarking   counter-propagation neural network   desynchronization attack
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《重庆邮电大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆邮电大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号