摘 要: | 在图论中,图的连通性研究是一个较重要的方面,因为图的许多性质都与图的连通性有着密切的联系.李慰萱在其所著的《图论》一书中介绍了有向图的各种连通度,并且给出了有关强弧连通度λ_3与最小出入度δ_3的两个结论1.对任何有向图D,K_3≤λ_3≤δ_3.2.若D是一个强有向图,δ_3≥[p/2],则λ_3=δ_3.我们推广了上述第2个结论,得到了下面的结果:定理 若D是一个有P个顶点的有向图,记d_3(v)=min{odv,idv},如果存在整数k(1≤k≤4),使对D中任意k个顶点v_1,…,v_k都有d_3(v_1)+…+d_3(v_k)≥k/2(p-2)+1/2则λ_3=δ_3.
|