首页 | 本学科首页   官方微博 | 高级检索  
     

基于全局特征和局部特征组合的脸谱识别方法
引用本文:孔锐,施泽生,郭立,张国宣. 基于全局特征和局部特征组合的脸谱识别方法[J]. 系统仿真学报, 2004, 16(5): 1077-1080
作者姓名:孔锐  施泽生  郭立  张国宣
作者单位:中国科学技术大学电子科学与技术系,合肥,230026
基金项目:高校博士点学科专项基金(20020358033)
摘    要:本文中,提出了一种新的脸谱识别方法。首先利用核主分量分析技术提取脸谱图象的全局特征,然后利用独立分量分析技术提取脸谱图象的局部特征,分别挑选出部分局部特征向量与部分全局特征向量组合成脸谱的组合特征向量,然后利用支持向量机分类器进行识别。采用ORL脸谱库进行测试,并与其它特征提取方法进行了比较,实验结果显示基于组合特征方法的识别率明显优于其它方法。

关 键 词:核主分量分析  独立分量分析  主分量分析  支持向量机
文章编号:1004-731X(2004)05-1077-04
修稿时间:2003-03-05

Face Recognition Method Based on Combination Features of Global and Local Features
KONG Rui,SHI Ze-sheng,GUO Li,ZHANG Guo-xuan. Face Recognition Method Based on Combination Features of Global and Local Features[J]. Journal of System Simulation, 2004, 16(5): 1077-1080
Authors:KONG Rui  SHI Ze-sheng  GUO Li  ZHANG Guo-xuan
Abstract:In the paper, we propose a new method for face recognition. Firstly, we extract global features using Kernel Principal Component Analysis (KPCA)) technique and extract local features using Independent Component Analysis (ICA) technique. We select some of the local features and the global features and combine them. Then we performance classification using the combination features. For validation of our method, we have tested our method on the ORL face database by using linear Support Vector Machine. Meanwhile, we have compared performance of our method with that of PCA-based, KPCA-based and ICA-based methods. The experiment results show the performance of our method is superior to those of other methods.
Keywords:kernel principal component analysis  independent component analysis  principal component analysis  support vector machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号