首页 | 本学科首页   官方微博 | 高级检索  
     

一类具有唯一定长路的有向图的自同构群
引用本文:王军. 一类具有唯一定长路的有向图的自同构群[J]. 大连理工大学学报, 1989, 29(2): 125-129
作者姓名:王军
作者单位:大连理工大学应用数学研究所
摘    要:Lam和Van Lint 在推广友谊定理时构造了一类具有唯一定长路的有向图(这里 用D(c,k)表示),并证明了D(c,k)的自同构群包含一个2(c+1)阶二面体群。 木文利用D(c.k)的邻接矩阵的性质证明这个二面体群就是D(c,k)的全自同构群, 从而解决了 Lam和 Van Lint作中遗留的问题。

关 键 词:有向图 矩阵 自同构 群 g-循环矩阵

The Automorphism Groups for a Kind of Directed Graphs with Unique Paths of Fixed Length
Wang Jun. The Automorphism Groups for a Kind of Directed Graphs with Unique Paths of Fixed Length[J]. Journal of Dalian University of Technology, 1989, 29(2): 125-129
Authors:Wang Jun
Abstract:Lam and Van Lint, in their generalization of the Friendship Theorem, construct a kind of directed graphs with unique paths of fixed length, here denoted by D(c, k), and have proved that the automorphism group for D(c,k) contains a dihedral group of order 2(c+1). The author has proved that the dihedral group is just the full automorphism group for D(c, k), using the properties of the adjacent matrix of D(c, k). Hence, a problem left over in Lam and Van Lint's work has been solved.
Keywords:directed graph   matrix  automorphism  group/directed path  g-circulant matrix  Hall-polynomial  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号