首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical analysis of JMC effect on stress wave transmission and reflection
Authors:Xin Chen  Mei-feng Cai  Jian-chuan Li  Wen-hui Tan
Institution:1.Beijing Key Laboratory of Urban Underground Space Engineering,University of Science and Technology Beijing,Beijing,China;2.Civil and Resource Engineering School,University of Science and Technology Beijing,Beijing,China;3.Institute of Underground Space Technology, School of Civil Engineering,Southeast University,Nanjing,China
Abstract:Taking the joint matching coefficient (JMC) which represents the contact area ratio of the joint in rock masses as the key parameter, a one-dimensional contacted interface model (CIM-JMC) was established in this study to describe the wave propagation across a single joint. According to this model, the reflected and transmitted waves at the joint were obtained, and the energy coefficients of reflection and transmission were calculated. Compared with the modified Split Hopkinson pressure bar (SHPB) experiment, it was validated by taking the incident wave of the SHPB test as the input condition in the CIM-JMC, and the reflected and transmitted waves across the joint were calculated by the model. The effects of four sets of JMCs (0.81, 0.64, 0.49, and 0.36) on the transmission and reflection of the stress wave propagation across the joint were analyzed and compared with the experimental results. It demonstrated that the values of CIM-JMC could represent both the transmission and reflection of the stress wave accurately when JMC > 0.5, but could relatively accurately represent the reflection rather than the transmission when JMC < 0.5. By contrasting energy coefficients of joints with different JMCs, it was revealed that energy dissipated sharply along the decrease of JMC when JMC > 0.5.
Keywords:
本文献已被 万方数据 SpringerLink 等数据库收录!
点击此处可从《矿物冶金与材料学报》浏览原始摘要信息
点击此处可从《矿物冶金与材料学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号