首页 | 本学科首页   官方微博 | 高级检索  
     

基于最短主干道距离的零售户聚类研究
引用本文:杜秀亭,杨晨光. 基于最短主干道距离的零售户聚类研究[J]. 内蒙古大学学报(自然科学版), 2012, 43(3): 306-312
作者姓名:杜秀亭  杨晨光
作者单位:1. 内蒙古自治区烟草公司,呼和浩特,010010
2. 四川大学计算机软件学院,成都,610225
基金项目:国家自然科学基金资助项目
摘    要:在研究零售户聚类分析中,传统的k中心聚类方法,计算成本过大,无法有效应用子大数据集.提出了零售户聚类方法,继承CLARANS算法迭代思想,采用全局随机抽样技术,将算法应用于大型空间数据集,通过多次迭代尽量寻求最优聚类结果.聚类结果的评价标准为基于最短主干道距离(SARD)的总距离.该聚类算法是在CLARANS算法的基础上进行改进,使其能够处理带地理信息的数据对象,且聚类结果满足需求约束条件限制.

关 键 词:聚类算法  最短主干道距离  差异度

A Retailer Cluster Research Based on the Shortest Arterial Road Distance (SARD)
DU Xiu-ting , YANG Chen-guang. A Retailer Cluster Research Based on the Shortest Arterial Road Distance (SARD)[J]. Acta Scientiarum Naturalium Universitatis Neimongol, 2012, 43(3): 306-312
Authors:DU Xiu-ting    YANG Chen-guang
Affiliation:1.Inner Mongolia Tobacco Enterprise,Hohhot 010010,China; 2.College of Software Engineering,Sichuan University,Chengdu 610225,China)
Abstract:In the study of retailer cluster analysis,the traditional k center cluster method can not be used effectively for large data sets because of too much computation.A method of retailer cluster analysis based on the CLARANS iterative algorithm is proposed and the global random sampling technique is used in this method to deal with the large spatial data sets.Optimal cluster results may be obtained through several iterations.An evaluation criterion of the cluster results is the total distance that based on the Shortest Arterial Road Distance(SARD).The cluster algorithm is improved based on the CLARANS algorithm and can be used to process data with geographic information,and its results can meet the demand constraint conditions.
Keywords:cluster algorithm  the shortest arterial road distance(SARD)  variability
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号