Peritectic solidification under high undercooling conditions |
| |
Authors: | Chongde Cao Xiaoyu Lu Bingbo Wei |
| |
Affiliation: | (1) Department of Applied Physics, Northwestern Polytechnical University, 710072 Xi’ an, China |
| |
Abstract: | The solidification characteristics of highly undercooled Cu-7.77% Co peritectic alloy has been examined by glass fluxing technique. The obtained undercoolings vary from 93 to 203 K(0.14 TL). It is found that the α(Co) phase always nucleates and grows preferentially, which is followed by peritectic transformation. This means that the peritectic phase cannot form directly, even though the alloy melt is undercooled to a temperature far below its peritectic point. The maximum recalescence temperature measured experimentally decreases as undercooling increases, which is lower than the thermodynamic calculation result owing to the actual non-adia-batic nature of recalescence process. The dendritic fragmentation of primary α (Co) phase induced by high undercooling is found to enhance the completion of peritectic transformation. In addition, the LKT/BCT dendrite growth model is modified in order to make it appllcable to those binary alloy systems with seriously curved liquidus and solidus lines. The dendrite growth velocities of primary α (Co) phase are subsequently calculated as a function of undercooling on the basis of this model. |
| |
Keywords: | peritectlc solidfication undercooling nucleation recalescence dendrite growth |
本文献已被 SpringerLink 等数据库收录! |
| 点击此处可从《科学通报(英文版)》浏览原始摘要信息 |
|
点击此处可从《科学通报(英文版)》下载全文 |