首页 | 本学科首页   官方微博 | 高级检索  
     

基于随机矩阵理论和改进粒子群优化-深度置信网络的无功优化
引用本文:夏芃,张倩,王群京,王璨. 基于随机矩阵理论和改进粒子群优化-深度置信网络的无功优化[J]. 科学技术与工程, 2021, 21(33): 14165-14172
作者姓名:夏芃  张倩  王群京  王璨
作者单位:安徽大学电气工程及自动化学院,合肥230601;安徽大学工业节电与电能质量控制协同创新中心,合肥230601;安徽大学电气工程及自动化学院,合肥230601;教育部电能质量工程研究中心(安徽大学),合肥230601;安徽大学电气工程及自动化学院,合肥230601;工业节电与用电安全安徽省重点实验室(安徽大学),合肥230601;国网安徽省电力有限公司,合肥230601
基金项目:国家自然科学基金(52077001)
摘    要:配电网无功优化是使电网能安全稳定运行的重要问题,本文将深度学习应用于配电网无功优化上,提出基于改进的粒子群优化 (Particle swarm optimization, PSO)深度置信网络(Deep Belief Networks,DBN)模型的配电网无功优化方法。首先,利用随机矩阵理论将配电网运行过程中产生的环境以及电气数据构造五种随机矩阵,每种矩阵构建8种特征指标,共提取40种特征指标;其次,以随机矩阵理论所提取的各特征指标为输入,以变压器分接头档位和节点的无功补偿容量作为输出,利用改进的PSO优化DBN网络的初始权重,建立PSO-DBN模型,学习各特征指标输入与变压器分接头档位以及节点无功补偿这两种控制策略之间的关系,得出相应的无功优化策略。最后,以改进的IEEE33节点系统作为算例仿真对象,验证了所提方法可降低网损和减少电压波动。

关 键 词:无功优化  随机矩阵理论  粒子群优化  深度置信网络
收稿时间:2021-05-11
修稿时间:2021-09-08

Reactive power optimization based on random matrix theory and improved PSO-DBN
Xia Peng,Zhang Qian,Wang Qunjing,Wang Can. Reactive power optimization based on random matrix theory and improved PSO-DBN[J]. Science Technology and Engineering, 2021, 21(33): 14165-14172
Authors:Xia Peng  Zhang Qian  Wang Qunjing  Wang Can
Affiliation:School of Electrical Engineering and Automation, Anhui University;Collaborative Innovation Center of Industrial Energy-Saving and Power Quality Control, Anhui University;School of Electrical Engineering and Automation, Anhui University; Anhui Key Laboratory of Industrial Power Conservation and Power Safety (Anhui University)
Abstract:Reactive power optimization of the distribution network is an important issue of safe and stable operation in distribution network. Deep learning is applied to the reactive power optimization of the distribution network, and an improved particle swarm optimization (PSO) -deep belief network (DBN) method in reactive power optimization is proposed. First, the random matrix theory of five random matrices from the environment and electrical data from the operation of the distribution network. 8 characteristic indexes are constructed in each matrix, a total of 40 characteristic indexes are extracted; Second, the random matrix theory is used to input of extracted characteristic index. the transformer tap position and the reactive power compensation capacity of the node are used as output. Third, the improved PSO algorithm is used to optimize the initial weight of the DBN network, a PSO-DBN model is established. The relationship between characteristic indicators and reactive power optimization strategies are leaned. So, the corresponding reactive power optimization strategies is obtained. Finally, the improved IEEE33-node system is used as an example simulation case. This case is verified the method in this paper can reduce network loss and reduce voltage fluctuations.
Keywords:reactive power optimization    random matrix theory   particle swarm optimization   deep belief network.
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号