首页 | 本学科首页   官方微博 | 高级检索  
     

改进的多变量同步指数脑机接口分类算法
引用本文:马鹏飞,董朝轶,马爽,贾婷婷,肖志云,齐咏生,陈晓艳,林瑞静. 改进的多变量同步指数脑机接口分类算法[J]. 科学技术与工程, 2021, 21(34): 14598-14603
作者姓名:马鹏飞  董朝轶  马爽  贾婷婷  肖志云  齐咏生  陈晓艳  林瑞静
作者单位:内蒙古工业大学电力学院,呼和浩特010080;内蒙古自治区机电控制重点实验室,呼和浩特010051
基金项目:国家自然科学基金(61364018,61863029);内蒙古自然科学基金 (2016JQ07);内蒙古科技成果转化项目(CGZH2018129);内蒙古自治区科技计划项目(2020GG0268,2021GG0264)
摘    要:近年来,稳态视觉诱发电位(steady-state visual evoked potential, SSVEP)范式脑机接口(Brain-computer interface, BCI)得到了日益广泛的研究。如何选择不同的分类特征,对于提高频率识别的准确率,改善SSVEP-BCI系统至关重要。针对少目标刺激范式的SSVEP-BCI系统,本文提出小波包变换(wavelet packet transform, WPT)同多变量同步指数(multivariate synchronization index,MSI)相结合的方法,对10名被试者的400组SSVEP数据进行特征提取并分类。在分类过程中,讨论了在导联数量和数据长度两个参数对改进算法的影响。实验结果表明:在数据长度为1.5 s,导联7导的条件下,基于WPT-MSI的SSVEP算法的分类准确率达到98.94%,信息传输率为76.24 bit/min。明显优于典型的MSI算法和其他改进算法,具有显著提高的频率识别正确率。

关 键 词:脑机接口  稳态视觉诱发电位  小波包变换  特征提取  多变量同步指数
收稿时间:2021-05-18
修稿时间:2021-10-08

An improved multivariate synchronization index brain computer interface classification algorithm
Ma Pengfei,Dong Chaoyi,Ma Shuang,Jia Tingting,Xiao Zhiyun,Qi Yongsheng,Chen Xiaoyan,Lin Ruijing. An improved multivariate synchronization index brain computer interface classification algorithm[J]. Science Technology and Engineering, 2021, 21(34): 14598-14603
Authors:Ma Pengfei  Dong Chaoyi  Ma Shuang  Jia Tingting  Xiao Zhiyun  Qi Yongsheng  Chen Xiaoyan  Lin Ruijing
Affiliation:College of electric power, Inner Mongolia University of Technology
Abstract:In recent years, a Brain-computer Interface (BCI) with a Steady-state Visual Evoked Potential (SSVEP) paradigm has been widely studied. How to choose various categorization features is very important for enhancing frequency identification accuracy and improving the performance of the SSVEP-BCI system. Aiming at the SSVEP-BCI system of the few target stimulus paradigm, a method of combining a Wavelet Packet Transform (WPT) with a Multivariate Synchronization Index (MSI) is proposed in this paper. Then the method is applied for feature extractions and task classifications of 400 SSVEP data sets from 10 subjects. During the classification processes, the influence of the two crucial parameters, i.e., the number of leads and the length of the data, are analyzed and discussed during the application of the improved algorithm. The results show: Under the condition that the data length is 1.5 s and the lead is 7 leads, the classification accuracy of the SSVEP algorithm based on the WPT-MSI reaches 98.94% and the information transmission rate arrives 76.24 bit/min. The accuracy is significantly better than the typical MSI algorithm and other related algorithms. Thus, the accuracy of the frequency recognition of SSVEP is significantly increased by the proposed method.
Keywords:brain computer interface   steady-state visual evoked potential   wavelet packet transform   feature extraction   multivariate synchronization index
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号