首页 | 本学科首页   官方微博 | 高级检索  
     

基于二叉树的SVM多类分类算法研究
引用本文:王晓锋,秦玉平. 基于二叉树的SVM多类分类算法研究[J]. 湖南工程学院学报(自然科学版), 2008, 18(3): 68-70
作者姓名:王晓锋  秦玉平
作者单位:1. 渤海大学数学系,辽宁,锦州,121013
2. 渤海大学信息科学与工程学院,辽宁,锦州,121013
摘    要:支持向量机是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势.支持向量机本身是一个两类问题的判别方法,不能直接应用于多类问题.介绍了基于二叉树的SVM多类分类算法,通过对其原理和实现方法的分析,对这些方法的优缺点进行了归纳和总结,给出了进一步的研究方向.

关 键 词:支持向量机  多类分类  二叉树

Research on SVM Multi-class Classification Based on Binary tree
WANG Xiao-feng,QIN Yu-ping. Research on SVM Multi-class Classification Based on Binary tree[J]. Journal of Hunan Institute of Engineering(Natural Science Edition), 2008, 18(3): 68-70
Authors:WANG Xiao-feng  QIN Yu-ping
Affiliation:WANG Xiao-feng, QIN Yu-ping (1. Dept. of Mathematics 2. College of Information Science and Engineering, Bohai University, Jinzhou 121013,China)
Abstract:SVM is an effective method of learning the classification knowledge from massive data,especially in the situation of high cost in getting labeled classical examples.SVM is used for the binary-class classification.It can't deal with multi-class classification directly.In this paper.some methods for svm multi-class classification based on binary tree are introduced.Their advantages and disadvantages are compared and further research direction is pointed out.
Keywords:Supprot Vector Machine  multi-class classification  binary tree
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号