首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的苹果检测技术
引用本文:黄星奕,林建荣,赵杰文. 基于支持向量机的苹果检测技术[J]. 江苏大学学报(自然科学版), 2005, 26(6): 465-467
作者姓名:黄星奕  林建荣  赵杰文
作者单位:江苏大学生物与环境工程学院,江苏,镇江,212013;江苏大学生物与环境工程学院,江苏,镇江,212013;江苏大学生物与环境工程学院,江苏,镇江,212013
基金项目:国家“863”基金资助项目(2002AA248051);国家自然科学基金资助项目(30370813);江苏省自然科学基金资助项目(Bl(2002005)
摘    要:由于苹果果梗和缺陷的识别是苹果检测中的难点,两者的误分类会造成苹果等级的误判.作者提出了苹果果梗和缺陷图像分形特征提取的改进算法,构建了支持向量机并采用SMO算法对其进行训练.用计算机视觉系统采集苹果图像,然后提取苹果果梗和缺陷的分形特征作为支持向量机的输入进行识别.用富士苹果进行试验,得到的平均识别正确率为90.6%.

关 键 词:苹果  检测  计算机视觉  支持向量机  分形
文章编号:1671-7775(2005)06-0465-03
收稿时间:2005-08-30
修稿时间:2005-08-30

Detection on defects of apples based on support vector machine
HUANG Xing-yi,LIN Jian-rong,ZHAO Jie-wen. Detection on defects of apples based on support vector machine[J]. Journal of Jiangsu University:Natural Science Edition, 2005, 26(6): 465-467
Authors:HUANG Xing-yi  LIN Jian-rong  ZHAO Jie-wen
Affiliation:School of Biological and Environmental Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
Abstract:Identification of stem and blemish is a thorny problem in apple grading. If the stem is incorrectly classified as blemish, a false grade will be assigned to the fruit. A new method based on support vector machine (SVM) is proposed to identify blemish and stem on Fuji apples. A fractal algorithm was adopted and modified to extract features of stem and blemish. The SVM was constructed and trained using sequential minimal optimization (SMO) algorithm. The fractal features of stem and blemish were fed as input of the SVM to distinguish stem and blemish. The test results on Fuji apples showed that an average of 90% classification accuracy was achieved by using the proposed method. In a more general way, the proposed method is applicable to feature detection for other types of produce.
Keywords:apple   detection    computer vision    support vector machine    fractal
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号