首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部正脸合成和两阶段表示的三阶段人脸识别算法
引用本文:赵清杰,齐惠,张雨,王浩. 基于局部正脸合成和两阶段表示的三阶段人脸识别算法[J]. 北京理工大学学报, 2017, 37(6): 637-643. DOI: 10.15918/j.tbit1001-0645.2017.06.016
作者姓名:赵清杰  齐惠  张雨  王浩
作者单位:北京理工大学计算机学院,智能信息技术北京市重点实验室,北京 100081;北京理工大学计算机学院,智能信息技术北京市重点实验室,北京 100081;北京理工大学计算机学院,智能信息技术北京市重点实验室,北京 100081;北京理工大学计算机学院,智能信息技术北京市重点实验室,北京 100081
基金项目:国家自然科学基金资助项目(61175096,60940024)
摘    要:基于两阶段表示的人脸识别算法(TPTSR)识别率高,并且对遮挡、噪声等干扰鲁棒,但是当人脸姿态有较大变化时,TPTSR算法的识别率会明显下降.针对这一问题,提出基于局部正脸合成和TPTSR的三阶段人脸识别算法:第一个阶段,正脸合成阶段,利用提出的正脸合成算法和视点库,将偏转角度较大的测试样本合成相应的正脸,作为新的测试样本;第二个阶段,样本筛选阶段,选择出对最新的测试样本最具表示能力的M个训练样本;第三个阶段,决策识别阶段,用这M个训练样本做人脸识别.通过与经典算法的对比实验证明,提出的3PTSR人脸识别算法能有效解决多姿态人脸识别问题. 

关 键 词:人脸识别  正脸合成  稀疏表示
收稿时间:2014-04-28

Three-Phase Face Recognition Algorithm via Locally Frontal Face Synthesis and Two-Phase Face Recognition
ZHAO Qing-jie,QI Hui,ZHANG Yu and WANG Hao. Three-Phase Face Recognition Algorithm via Locally Frontal Face Synthesis and Two-Phase Face Recognition[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2017, 37(6): 637-643. DOI: 10.15918/j.tbit1001-0645.2017.06.016
Authors:ZHAO Qing-jie  QI Hui  ZHANG Yu  WANG Hao
Affiliation:Beijing Laboratory of Intelligent Information Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:Two-phase test sample representation algorithm (TPTSR), which is robust to interference such as occlusion and noise, performs well in face recognition without pose variation. However, its recognition rate will decline when the face pose varies dramatically. To solve this problem, a three-phase test sample representation algorithm was proposed. The first was frontal face synthesizing was a frontal face with small horizontal deflection angle was synthesized using view-library and proposed frontal face synthesizing algorithm. Thus, a frontal face was synthesized as the new test sample. The second was training sample selecting phase, M training samples that make the most contribution were selected to represent the new test sample. The third was decision and recognition phase, a face was recognized using the M training samples. Experiments on some publicly available face recognition benchmarks demonstrate that the proposed 3PTSR algorithm outperforms the state-of-the-art methods in challenging conditions, especially for the face with various poses.
Keywords:face recognition  frontal face synthesis  sparse representation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号