首页 | 本学科首页   官方微博 | 高级检索  
     


Statistical estimation of optimal portfolios for non‐Gaussian dependent returns of assets
Authors:Hiroshi Shiraishi  Masanobu Taniguchi
Affiliation:Department of Applied Mathematics, School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan
Abstract:This paper discusses the asymptotic efficiency of estimators for optimal portfolios when returns are vector‐valued non‐Gaussian stationary processes. We give the asymptotic distribution of portfolio estimators ? for non‐Gaussian dependent return processes. Next we address the problem of asymptotic efficiency for the class of estimators ?. First, it is shown that there are some cases when the asymptotic variance of ? under non‐Gaussianity can be smaller than that under Gaussianity. The result shows that non‐Gaussianity of the returns does not always affect the efficiency badly. Second, we give a necessary and sufficient condition for ? to be asymptotically efficient when the return process is Gaussian, which shows that ? is not asymptotically efficient generally. From this point of view we propose to use maximum likelihood type estimators for g, which are asymptotically efficient. Furthermore, we investigate the problem of predicting the one‐step‐ahead optimal portfolio return by the estimated portfolio based on ? and examine the mean squares prediction error. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:optimal portfolio  return process  non‐Gaussian linear process  spectral density  asymptotic efficiency  prediction error
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号