首页 | 本学科首页   官方微博 | 高级检索  
     

基于正域的决策树构造方法
引用本文:邓春燕,;吕跃进. 基于正域的决策树构造方法[J]. 河池师专学报, 2008, 0(5): 71-74
作者姓名:邓春燕,  吕跃进
作者单位:[1]广西大学数学与信息科学管理学院,广西南宁530004; [2]河池学院计算机与信息科学系,广西宜州546300
摘    要:决策树是数据挖掘中的一种重要分类方法。在此以粗糙集理论中的正域为启发式函数,设计了一种新的、有效的决策树构造方法。该算法具有较大的灵活性,能从测试属性空间逐次删除已使用过的属性。避免对这些属性进行重复测试,减少测试空间,降低了树的复杂性,从而提高了分类效率。最后,实例验证了算法的可行性与有效性。

关 键 词:决策树  决策表  粗糙集  正域

A Method to Build Decision Tree Based on Positive Region
Affiliation:DENG Chun- yan, LV Yue-jin ( 1. Department of Mathematic and Information Science, Guangxi University, Nanning, Guangxi 530004 ; 2. Department of Computer and Information Science, Hechi University, Yizhou, Guangxi 546300, China)
Abstract:Decision tree is an important method to solve classification problems in data mining. In this paper, the positive region in the rough set is used as the heuristic function to design a novel and effective method to build decision tree. The algorithm with flexibility can avoid repeatedly testing these attributes by gradually deleting those used attributes, reduce the testing attributes space and the complexity of the tree, thus improve the classification efficiency. Furthermore, an example is given to verify the feasibility and effectiveness of the algorithm.
Keywords:decision tree  decision table  rough set  positive region
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号