摘 要: | 一个环R叫做weakly J-clean环,如果R中的每一个元素都可以写成a=e+j或a=-e+j的形式,其中e是幂等元,j属于Jacobson根.文章探究了weakly J-clean环的各种性质,证明了R是weakly J-clean环当且仅当R是clean环并且R/J(R)是弱布尔环,当且仅当R/6R是weakly J-clean环且幂等元关于J(R)可以提升.一个环R是唯一weakly nil clean环当且仅当R是阿贝尔环;J(R)是幂零的并且R是weakly J-clean环.每个weakly J-clean环R是右(左)quasi-duo环.并进一步证明以下几点是等价的:R是J-clean环;存在一个大于等于1的整数n,使得Tn(R)是J-clean环;存在一个大于等于2的整数n,使得Tn(R)是weakly J-clean环;存在一个大于等于2的整数n,使得×nR是weakly J-clean环.
|