摘 要: | 定义了weakly almost clean环.交换环R叫做weakly almost clean环,如果对于任意一个元素x∈R可以写成x=r+e或x=r-e的形式,其中r∈reg(R)且e∈Id(R).首先,对于环Ri的非空集合{Ri},证明了直和R=∏i∈IRi为weakly almost clean当且仅当存在m∈I使Rm为weakly almost clean且对所有的n≠m,Rn为almost clean.然后,设R是一个环且M为一个R-模,得到了R和M的平凡扩张R(M)为weakly almost clean当且仅当每个x∈R可以写成x=r+e或x=r-e的形式,其中r∈R-(Z(R)∪Z(M))且e∈Id(R).进而推广了almost clean环的相应结果.
|