首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nanofabricated media with negative permeability at visible frequencies
Authors:Grigorenko A N  Geim A K  Gleeson H F  Zhang Y  Firsov A A  Khrushchev I Y  Petrovic J
Institution:Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, UK. sasha@man.ac.uk
Abstract:A great deal of attention has recently been focused on a new class of smart materials--so-called left-handed media--that exhibit highly unusual electromagnetic properties and promise new device applications. Left-handed materials require negative permeability micro, an extreme condition that has so far been achieved only for frequencies in the microwave to terahertz range. Extension of the approach described in ref. 7 to achieve the necessary high-frequency magnetic response in visible optics presents a formidable challenge, as no material--natural or artificial--is known to exhibit any magnetism at these frequencies. Here we report a nanofabricated medium consisting of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits a strong magnetic response at visible-light frequencies, including a band with negative micro. The magnetism arises owing to the excitation of an antisymmetric plasmon resonance. The high-frequency permeability qualitatively reveals itself via optical impedance matching. Our results demonstrate the feasibility of engineering magnetism at visible frequencies and pave the way towards magnetic and left-handed components for visible optics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号