首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合变邻域遗传算法的柔性车间调度研究
引用本文:刘明豪,蔡劲草,王雷,顾瀚,张茂杉,谭铁龙. 基于混合变邻域遗传算法的柔性车间调度研究[J]. 井冈山大学学报(自然科学版), 2023, 44(5): 99-106
作者姓名:刘明豪  蔡劲草  王雷  顾瀚  张茂杉  谭铁龙
作者单位:安徽工程大学机械工程学院, 安徽, 芜湖 241000;芜湖杭翼集成设备有限公司, 安徽, 芜湖 241000;芜湖柯埔智能装备有限公司, 安徽, 芜湖 241000
基金项目:安徽省高校自然科学重点科研项目(2022AH050978,2023AH052915);安徽省高校优秀拔尖人才培育项目(gxbjZD2022023);安徽工程大学-鸠江区产业协同创新专项基金项目(2022cyxtb6);芜湖市科技计划项目(2022jc26)
摘    要:针对柔性作业车间调度的问题,以最大完工时间为目标建立数学模型,提出一种混合变邻域遗传算法。采用三种初始化方法保证初始解的质量,用遗传算法进行初步搜索,将搜索的结果通过迭代贪婪策略进一步搜索,以提高解的质量,再对关键路径进行邻域搜索,设计“跨机器工序搜索邻域”、“同机器工序搜索邻域”、“次优工序搜索邻域”三种邻域结构,加强局部搜索能力。引入迭代贪婪策略和改进的邻域结构可显著提高算法的稳定性与迭代速度。通过对国际通用的柔性作业车间调度基准算例进行测试,实验结果表明所提改进算法能够有效求解柔性作业车间调度问题。

关 键 词:柔性作业车间调度  混合变邻域  遗传算法
收稿时间:2022-11-17
修稿时间:2023-03-15

RESEARCH ON FLEXIBLE JOB SHOP SCHEDULING PROBLEM BASED ON HYBRID VARIABLE NEIGHBORHOOD GENETIC ALGORITHM
LIU Ming-hao,CAI Jing-cao,WANG Lei,GU Han,ZHANG Mao-shan,TAN Tie-long. RESEARCH ON FLEXIBLE JOB SHOP SCHEDULING PROBLEM BASED ON HYBRID VARIABLE NEIGHBORHOOD GENETIC ALGORITHM[J]. Journal of Jinggangshan University(Natural Sciences Edition), 2023, 44(5): 99-106
Authors:LIU Ming-hao  CAI Jing-cao  WANG Lei  GU Han  ZHANG Mao-shan  TAN Tie-long
Affiliation:School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China;Wuhu Hangyi Integrated Equipment Co., Ltd, Wuhu, Anhui 241000, China; Wuhu Kepu Intelligent Equipment Co., Ltd, Wuhu, Anhui 241000, China
Abstract:Aiming at flexible job-shop scheduling problem, a hybrid variable neighborhood genetic algorithm was proposed to establish a mathematical model with the goal of maximum completion time. In this paper, three initialization methods were used to ensure the quality of the initial solution. The genetic algorithm was used for preliminary search, and the search results were optimized by iterative greedy strategy to improve the quality of the solution. Three kinds of neighborhood structures, "cross-machine process search neighborhood", "same-machine process search neighborhood" and "suboptimal process search neighborhood", were designed to strengthen the local search ability. Through the test of the international general flexible job shop scheduling benchmark example, the experimental results showed that the proposed algorithm could effectively solve the flexible job shop scheduling problem. The introduction of iterative greedy strategy and improved neighborhood structure could significantly improve the stability and iteration speed of the algorithm.
Keywords:flexible job shop scheduling  mixed variable neighborhood  genetic algorithm
点击此处可从《井冈山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《井冈山大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号