首页 | 本学科首页   官方微博 | 高级检索  
     

关于Schur数的两个不等式
引用本文:郭嵩. 关于Schur数的两个不等式[J]. 淮阴师范学院学报(自然科学版), 2006, 5(2): 99-101
作者姓名:郭嵩
作者单位:淮阴师范学院,数学系,江苏,淮安,223300
基金项目:江苏省教育厅自然科学基金
摘    要:对每个整数k≥1,仅有有限个整数n满足:存在整数集合[1,n]上的一种k着色,使x+y=z的单色解在[1,n]内不存在.这些数最大的叫作Schur数,记为S(k).如果把条件加强为数组(x,y,z)中各数互不相同,满足条件的数S*(k)称为强Schur数.本文给出了关于这两种Schur数的两个不等式,并且给出了强Schur数的新下界.

关 键 词:Schur数  k着色  单色解
文章编号:1671-6876(2006)02-0099-03
收稿时间:2005-12-22
修稿时间:2005-12-22

Two Inequalities on Schur Numbers
GUO Song. Two Inequalities on Schur Numbers[J]. Journal of Huaiyin Teachers College(Natrual Science Edition), 2006, 5(2): 99-101
Authors:GUO Song
Abstract:For every integer k≥1,one only can find finite integers such that: there exists a k-coloring of the set such that there isn't any monochromatic solution to in x+y=z.The maximum integers satisfying such condition are called Schur numbers and denoted by S(k).If we restrict to triplets(x,y,z)of pairwise distinct integers,the integers S~(*)(k) called strong Schur numbers.The purpose of this paper is to give two inequalities on two kinds of Schur numbers and we also obtain a new lower bound of S~(*)(k) by the inequalities.
Keywords:Schur numbers  k-coloring  monochromatic solution
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号