首页 | 本学科首页   官方微博 | 高级检索  
     

图Laplacian半监督特征加权用于高光谱波段选择
引用本文:黄睿,陈玲. 图Laplacian半监督特征加权用于高光谱波段选择[J]. 应用科学学报, 2011, 29(6): 626-630. DOI: 10.3969/j.issn.0255-8297.2011.06.012
作者姓名:黄睿  陈玲
作者单位:上海大学通信与信息工程学院,上海200072
摘    要:
提出一种利用图Laplacian实现半监督波段选择的方法. 该方法首先将标记样本类别信息引入图Laplacian,接着通过广义特征值求解确定投影变换矩阵,最后采用载荷因子对变换矩阵进行系数分析,对波段重要性赋以权值并排序. 实验比较了多种波段选择算法,结果表明算法能更好地利用标记样本的类别信息和大量非标记样本中的局部结构信息,性能优于多种波段选择方法.

关 键 词:半监督特征加权  图Laplacian  波段选择  高光谱数据分类  
收稿时间:2011-03-11
修稿时间:2011-07-19

Semi-supervised Feature Weighting Using Graph Laplacian for Hyperspectral Band Selection
HUANG Rui,CHEN Ling. Semi-supervised Feature Weighting Using Graph Laplacian for Hyperspectral Band Selection[J]. Journal of Applied Sciences, 2011, 29(6): 626-630. DOI: 10.3969/j.issn.0255-8297.2011.06.012
Authors:HUANG Rui  CHEN Ling
Affiliation:School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China
Abstract:
A semi-supervised feature weighting using graph Laplacian is proposed for hyperspectral band selection.The method first constructs the graph Laplacian modified by the label information.The projection matrix is obtained by solving a generalized eigen-problem.The corresponding matrix coefficients are analyzed using the loading factors to assign weights to the original bands.Experiments with hyperspectral data sets are carried out to make comparison among several band selection algorithms.The results show that...
Keywords:semi-supervised feature weighting  graph Laplacian  band selection  hyperspectral data classification  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号