首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP人工神经网络的路基压实度预测模型研究
引用本文:杨学超,何彩平. 基于BP人工神经网络的路基压实度预测模型研究[J]. 甘肃科学学报, 2011, 23(3): 132-135
作者姓名:杨学超  何彩平
作者单位:1. 兰州交通大学土木工程学院,甘肃兰州,730070
2. 山西路桥第二工程有限公司,山西临汾,041051
基金项目:交通部西部交通建设科技项目(2005~2007)
摘    要:在大量路基碾压实验的基础上,通过对BP人工神经网络的分析,建立了路基压实度预测神经网络模型,并利用MATLAB环境下的神经网络工具箱开发了相应的程序.预测结果表明,该模型程序具有学习能力强、预测精度较高、快速方便等特点.这项研究为路基碾压施工工程中土的压实度预测研究提供了新的研究思路.

关 键 词:路基  碾压  压实度  神经网络  预测

Prediction Model of Subgrade Compaction Based on BP Artificial Neural Network
YANG Xue-chao,HE Cai-ping. Prediction Model of Subgrade Compaction Based on BP Artificial Neural Network[J]. Journal of Gansu Sciences, 2011, 23(3): 132-135
Authors:YANG Xue-chao  HE Cai-ping
Affiliation:YANG Xue-chao1,HE Cai-ping2(1.School of Civil Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China,2.The Second Engineering Company of Shanxi Roads and Bridges,Linfen 041051,China)
Abstract:Based on a large number of subgrade rolling experiments,through a neural network model of roadbed compaction prediction is established,and the corresponding programs are developed with the help of the neural network toolbox of MATLAB.Prediction results show that the model programs are high in learning abilities,quick and convenient in prediction.It has also paved a new way for the prediction of soil compaction during the construction process of subgrade crushes.
Keywords:subgrade  rolling compaction  degree of compaction  neural network  prediction  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号