首页 | 本学科首页   官方微博 | 高级检索  
     

4阶收敛的三次卷积插值算法及其边界条件
引用本文:上官晋太,党雅文. 4阶收敛的三次卷积插值算法及其边界条件[J]. 山西大学学报(自然科学版), 2012, 0(3): 487-492
作者姓名:上官晋太  党雅文
作者单位:长治学院计算机系;中国科学院电子学研究所
基金项目:山西省高校科技开发项目(20091154)
摘    要:图像插值是数字图像处理中的基本算法,三次卷积插值算法是图像插值中最常用的算法之一.当插值核函数定义在(-2,2)区间上时,其插值精度可达o(h3),即3阶收敛.为了提高插值精度,文章把核函数的定义区间扩大到(-3,3),此时插值精度可达o(h4).在左、右边界点插值时通过利用相邻采样点数据的相关性来解决数据缺失问题,这样可使全部插值过程达到4阶收敛.

关 键 词:4阶收敛  三次卷积插值  相关性  插值精度

Fourth-order Convergent Cubic Interpolation Algorithm and Its Boundary Condition
SHANGGUAN Jin-tai,DANG Ya-wen. Fourth-order Convergent Cubic Interpolation Algorithm and Its Boundary Condition[J]. Journal of Shanxi University (Natural Science Edit, 2012, 0(3): 487-492
Authors:SHANGGUAN Jin-tai  DANG Ya-wen
Affiliation:1.Department of Computer Science and Technology,Changzhi College,Changzhi 046011,China; 2.Institute of Electronics,Chinese Academy of Science,Beijing 100190,China)
Abstract:Image interpolation is a basic algorithm of digital image processing.Cubic convolution interpolation algorithm is one of the most widely used image interpolation methods.On the condition that kernel function is defined in(-2,2) interval,the interpolation precision is up to o(h3) that the third-order convergence.In order to improve the interpolation precision,the kernel definition interval is expanded to(-3,3),so the interpolation precision can get up to o(h4).When interpolation is performed at boundary points,by using the correlativity of neighbor points the sampled data lack question can be solved,so the whole interpolation precision can get to fourth-order convergence.
Keywords:fourth-order convergence  cubic convolution interpolation  correlativity  interpolation precision
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号