Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i) |
| |
Authors: | N Mochizuki Y Ohba E Kiyokawa T Kurata T Murakami T Ozaki A Kitabatake K Nagashima M Matsuda |
| |
Affiliation: | Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo. |
| |
Abstract: | Many receptors for neuropeptides and hormones are coupled with the heterotrimeric G(i) protein, which activates the p42/44 mitogen-activated protein kinase (ERK/MAPK) cascade through both the alpha- and betagamma-subunits of G(i). The betagamma-subunit activates the ERK/MAPK cascade through tyrosine kinase. Constitutively active G(alpha)i2 (gip2) isolated from adrenal and ovarian tumours transforms Rat-1 fibroblasts and also activates the ERK/MAPK cascade by an unknown mechanism. The ERK/MAPK pathway is activated by Ras, and is inhibited when the low-molecular-mass GTP-binding protein Rap1 antagonizes Ras function. Here we show that a novel isoform of Rapl GTPase-activating protein, called rap1GAPII, binds specifically to the alpha-subunits of the G(i) family of heterotrimeric G-proteins. Stimulation of the G(i)-coupled m2-muscarinic receptor translocates rap1GAPII from the cytosol to the membrane and decreases the amount of GTP-bound Rap1. This decrease in GTP-bound Rap1 activates ERK/MAPK. Thus, the alpha-subunit of G(i) activates the Ras-ERK/MAPK mitogenic pathway by membrane recruitment of rap1GAPII and reduction of GTP-bound Rap1. |
| |
Keywords: | |
|
|