首页 | 本学科首页   官方微博 | 高级检索  
     

基于决策树型SVM的交通标志图像识别
引用本文:朱金好,罗晓萍. 基于决策树型SVM的交通标志图像识别[J]. 长沙理工大学学报(自然科学版), 2004, 1(2): 13-17
作者姓名:朱金好  罗晓萍
作者单位:皖南医学院,计算机教研室,安徽,芜湖,241001;长沙理工大学,计算机与通信工程学院,湖南,长沙,410076
基金项目:湖南省自然科学基金资助项目(03JJY3101)
摘    要:由于采集信息装置简单和外界环境复杂,以及对识别方法的实时性、准确性要求,使得交通标志识别成为一项难题.首先根据交通标志特殊颜色信息和规则几何外形,利用边界矩技术迅速清除干扰区域,然后将剩下的区域规格化,送入训练好的决策树型支持向量机识别.在决策树型向量机训练阶段,使用模糊聚类算法,较好地完成了树型建构,使向量机具有良好的区分度.对大量实景图像进行实验证明,本研究方法具有平移、旋转、缩放、拉伸不变性和较强的容噪能力.

关 键 词:图像识别  边界矩  决策树型支持向量机
文章编号:1672-9331(2004)02-0013-05
修稿时间:2004-04-14

Recognition of Traffic Sign Images Based on Decision-tree-based Support Vector Machine
ZHU Jin-hao,LUO Xiao-ping. Recognition of Traffic Sign Images Based on Decision-tree-based Support Vector Machine[J]. Journal of Changsha University of Science and Technology(Natural Science), 2004, 1(2): 13-17
Authors:ZHU Jin-hao  LUO Xiao-ping
Affiliation:ZHU Jin-hao~1,LUO Xiao-ping~2
Abstract:Because of the simplicity of information acquisition device, the complexity of outer environment and the required real time and accuracy of recognition method, the recognition of traffic sign becomes a challenging task. At first, the authors quickly clear the disturbing regions using shape based moments on the basis of particular color and regular geometrics of traffic signs, then make remaining regions standard and input them into decision-tree-based support vector machine which well worked to recognize. Fuzzy clustering algorithm is used during the process and it performs the structure of decision tree and provides support vector machine good classification ability. Using many real road images, experimental results prove that the method is simple and efficient, having affine invariability of translation, rotation, scale and distortion and being noise-proof.
Keywords:image recognition  shape based moment  decision-tree-based support vector machine
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号