首页 | 本学科首页   官方微博 | 高级检索  
     

带筋车门密封系统的神经网络优化方法
引用本文:朱文峰,王杰,夏国勇,林佩剑. 带筋车门密封系统的神经网络优化方法[J]. 上海交通大学学报, 2014, 48(3): 377-381
作者姓名:朱文峰  王杰  夏国勇  林佩剑
作者单位:(1.同济大学 机械与能源工程学院, 上海 201804; 2.申雅密封件有限公司, 上海 201712)
基金项目:国家自然科学基金面上项目资助(51275359);上海市复杂薄板结构数字化制造重点实验室开放课题资助(2012005);青浦-同济科研合作平台项目资助
摘    要:车门密封系统截面设计是确保防水防尘、减振隔音的重要因素.针对典型带筋结构的车门头道密封非规则截面,将形成密封压缩负荷的海绵泡管区细分为5个子区域.以带筋区域厚度和角度为优化变量,基于企业工程实际,建立以设计压缩负荷为指标的优化目标函数.通过神经网络确立截面结构参数与压缩负荷的非线性映射,实现车门密封系统参数的并行优化.工程应用表明,该设计开发周期可缩短15%.

关 键 词:车门密封  压缩负荷  截面优化  神经网络
收稿时间:2013-07-01

Optimization Method of Automotive Door Sealing System with Bar Structure Based on Neural Networks
ZHU Wen-feng;WANG Jie;XIA Guo-yong;LIN Pei-jian. Optimization Method of Automotive Door Sealing System with Bar Structure Based on Neural Networks[J]. Journal of Shanghai Jiaotong University, 2014, 48(3): 377-381
Authors:ZHU Wen-feng  WANG Jie  XIA Guo-yong  LIN Pei-jian
Affiliation:(1.College of Mechanical Engineering, Tongji University, Shanghai 201804, China; 2.Huayu Cooper Standard Sealing Systems Co, Ltd., Shanghai 201712, China)
Abstract:In this paper, the first-seal cross-section with bar structure of a typical automotive door was analyzed. The sponge tube of the weatherstrip, which produces most of the compressive load, was divided into five sub-areas whose thicknesses and angles were selected as optimization variables, considering the compression space of the door sheet metal and nonlinear deformation process of the sealing system. Based on the engineering practice, an optimization objective function using the demanded compression load deflection (CLD) criterion was established. The nonlinear mapping between cross-section parameters and compression load was built by BP neural network and the parallel intelligent optimization was realized for ideal cross-section structure parameter. The engineering application proved that 15% of cycle time can be reduced using this computer-aided design method.
Keywords:auto door sealing  compression load  cross-section optimization  neural networks  
本文献已被 CNKI 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号