摘 要: | 在工业过程中,采集和记录的生产数据通常用于过程的控制和在线优化等,因此保证数据的可靠性和准确度具有非常重要的意义。但是在实际情况中,测量数据不可避免地受到误差的影响,而且在生产过程中经常会出现仪表失灵、管道泄漏等现象导致测量数据中出现显著误差,进而导致测量结果严重失实。数据校正是保证工业过程数据准确可靠的主要技术手段。传统的动态数据校正通常采用卡尔曼滤波方法,但当测量数据存在显著误差时,其得到的协调值的可信度较低。为了解决动态数据校正过程中得到的测量数据存在显著误差,导致协调值失实的问题,本文在传统卡尔曼滤波方法的基础上,提出了基于动态贝叶斯模型检测方法进行显著误差的实时侦破。该方法主要通过测量值的滤波,对已经滤波的测量值进行标准化处理,利用扩展贝叶斯网络建立概率分布模型以实现显著误差的检测。根据存在显著误差和正常情况下出现的测量值条件概率大小,判断测量值是否存在显著误差,并根据侦破结果对测量协方差矩阵及卡尔曼增益等参数进行更新,以提高协调值的精度。通过实例仿真对比验证了基于动态贝叶斯的检测方法可以有效地侦破显著误差,并且可以通过参数实时调整提高了存在显著误差时协调值的精度。
|