首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of microstructures restoration on high temperature fatigue behavior of DZ125 superalloy
Institution:School of Materials Science and Engineering, Beihang University, Beijing, China
Abstract:Combination of hot isostatic pressing (HIP) and rejuvenation heat treatment (RHT) technology was used to restore creep-damaged DZ125 directional solidified superalloy, and the influence of microstructure restoration on high temperature fatigue behavior of the samples was explored. The results show that the HIP+RHT process could effectively heal internal cavities and recover the degraded γ′ phase in creep-damaged DZ125 superalloy to cubic particles similar as in as-received sample. After restoration treatment, the stress concentration areas inside the sample eradicated with the healing of the internal cavities, and the fatigue source areas were limited only to near surface than initiating from inside as in the as-received and creep-damaged samples. As a result, the restored sample had higher crack initiation life and lower crack propagation rate compared to as-received and creep damaged samples. The TEM microstructure characterization near fatigue fracture showed that the restoration of the degraded γ′ phase eliminated tangled dislocation in creep damaged sample and produced evenly distributed dislocations in the γ channel with short curved line-like morphology, like the as-received sample, which effectively hindered the dislocations movement during subsequent deformation, and strengthen the fatigue resistant of alloy. Therefore, it can be concluded that the HIP-RHT process, through the combined effect of internal cavities healing and the restoration of the degraded microstructures, renders higher high temperature fatigue life than creep-damaged and even higher than as-received DZ125 superalloy.
Keywords:Hot isostatic pressing  Rejuvenation heat treatment  High temperature fatigue behavior  Healing of internal cavities  Restoring of degraded microstructures
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号