首页 | 本学科首页   官方微博 | 高级检索  
     

一种结合稀疏表示和切比雪夫矩的人脸识别算法
引用本文:李邺,陈北京,张旭,舒华忠. 一种结合稀疏表示和切比雪夫矩的人脸识别算法[J]. 东南大学学报(自然科学版), 2012, 42(2): 249-253
作者姓名:李邺  陈北京  张旭  舒华忠
作者单位:1. 东南大学生物科学与医学工程学院,南京210096;东南大学影像科学与技术实验室,南京210096
2. 东南大学影像科学与技术实验室,南京210096;南京信息工程大学计算机与软件学院,南京210044
3. 东南大学影像科学与技术实验室,南京,210096
基金项目:国家自然科学基金资助项目(61073138,61103141);教育部博士点基金资助项目(20110092110023)
摘    要:在基于稀疏表示的人脸识别算法的基础上,利用切比雪夫矩在图像重建及抗噪声方面的良好性能,提出了一种结合稀疏表示和切比雪夫矩的人脸识别算法,对有无加性噪声干扰的人脸图像进行识别.给出了详细的数学推导过程和算法实现步骤,并通过实验对算法进行了验证.针对扩展的Yale B人脸库和AR人脸库的识别结果表明,当特征空间维数为496时,该算法在不同光照条件和不同表情条件下的识别率分别为98.33%和88.72%,在添加椒盐噪声后像素破坏比例小于60%的条件下识别率为100%.与基于随机脸的最近邻分类法、最近子空间分类法及传统SRC算法相比,该算法在抵抗图像的细节信息变化方面具有更好的鲁棒性.

关 键 词:人脸识别  稀疏表示  切比雪夫矩  压缩感知

Face recognition algorithm by using sparse representation and Tchebichef moments
Li Ye , Chen Beijing , Zhang Xu , Shu Huazhong. Face recognition algorithm by using sparse representation and Tchebichef moments[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(2): 249-253
Authors:Li Ye    Chen Beijing    Zhang Xu    Shu Huazhong
Affiliation:1School of Biological Science and Medical Engineering,Southeast University,Nanjing 210096,China) (2Laboratory of Image Science and Technology,Southeast University,Nanjing 210096,China) (3 School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)
Abstract:Based on the sparse representation-based classification(SRC) algorithm,taking the advantages of Tchebichef moments in image representation and noise robustness,a face recognition algorithm combining the sparse representation and Tchebichef moments is proposed to recognize the face images with and without additive noise.The mathematical derivation and the specific procedure of the algorithm are given,and the experiments are made to verify the algorithm.The experimental results obtained from the extended Yale B database and the AR database show that when the feature space dimension is 496,the recognition rate of the proposed algorithm is 98.33% and 88.72% under various lighting conditions and expressions,respectively.When the proportion of pixels damaged by salt-pepper noise is less than 60%,the recognition rate is 100%.In terms of the robustness against various image details,this algorithm outperforms the nearest neighbor method,the nearest subspace method and the conventional SRC algorithm all of which are based on the randomfaces.
Keywords:face recognition  sparse representation  Tchebichef moments  compressed sensing
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号