首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gridsearch-SVM梯形区域极点分类的故障诊断
引用本文:杜紫薇,姚波,王福忠. 基于Gridsearch-SVM梯形区域极点分类的故障诊断[J]. 井冈山大学学报(自然科学版), 2023, 44(1): 8-13
作者姓名:杜紫薇  姚波  王福忠
作者单位:沈阳师范大学数学与系统科学学院, 辽宁, 沈阳 110034;沈阳工程学院基础教学部, 辽宁, 沈阳 110136
基金项目:国家自然科学基金项目(12101417)
摘    要:针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后,利用支持向量机算法(Support Vector Machine,SVM)根据不同通道发生故障时极点所处位置不同,设计极点分类器,对极点进行分类,实现对系统的故障诊断。针对SVM中惩罚因子和核宽度系数需要依靠先验知识的缺陷,采用Grid search优化其参数,缩小寻优范围。仿真结果表明设计方案的可行性以及故障诊断的有效性。

关 键 词:极点观测器  极点分类器  支持向量机  网格搜索法  区域极点配置  故障诊断
收稿时间:2022-04-03
修稿时间:2022-07-08

FAULT DIAGNOSIS BASED ON GRIDSEARCH-SVM TRAPEZOIDAL REGION POLE CLASSIFICATION
DU Zi-wei,YAO Bo,WANG Fu-zhong. FAULT DIAGNOSIS BASED ON GRIDSEARCH-SVM TRAPEZOIDAL REGION POLE CLASSIFICATION[J]. Journal of Jinggangshan University(Natural Sciences Edition), 2023, 44(1): 8-13
Authors:DU Zi-wei  YAO Bo  WANG Fu-zhong
Affiliation:College of Mathematics and System Science, Shenyang Normal University, Shenyang, Liaoning 110034, China; Department of Basic Education, Shenyang Institute of Engineering, Shenyang, Liaoning 110136, China
Abstract:For a class of linear time-invariant systems, the fault diagnosis of actuator components was studied based on trapezoidal region. Firstly, the pole observer was used to obtain the dynamic information of the pole by measuring the state or output of the system. Then, the fault of each channel actuator was simulated, and the pole information was collected in real time to form the pole classification database. Secondly, support vector machine (SVM) algorithm was used for the state classification, and the pole classifier was designed. The penalty factors and kernel width coefficient parameters of SVM algorithm were optimized by Gridsearch. The poles were classified according to the poles'' positions when faults occured in different channels to carry out fault diagnosis; Finally, the simulation results showed the feasibility of the design scheme and the effectiveness of fault diagnosis.
Keywords:pole observer  pole classifier  support vector machine  grid search method  regional pole assignment  fault diagnosis
点击此处可从《井冈山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《井冈山大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号