首页 | 本学科首页   官方微博 | 高级检索  
     

基于融合注意力机制与CNN-LSTM的人体行为识别算法
引用本文:武东辉,许静,陈继斌,孙彦玺,仇森. 基于融合注意力机制与CNN-LSTM的人体行为识别算法[J]. 科学技术与工程, 2023, 23(2): 681-689
作者姓名:武东辉  许静  陈继斌  孙彦玺  仇森
作者单位:郑州轻工业大学 建筑环境工程学院;大连理工大学控制科学与工程学院
基金项目:国家自然科学基金项目(61803072);河南省高等学校重点科研项目资助计划(19A413013);河南省科技攻关项目(222102210086和222102320298)
摘    要:为解决单一的卷积神经网络(CNN)缺乏利用时序信息与单一循环神经网络(RNN)对局部信息把握不全问题,提出了融合注意力机制与时空网络的深度学习模型(CLA-net)的人体行为识别方法。首先,通过CNN的强学习能力提取局部特征;其次,利用长短时记忆网络(LSTM)提取时序信息;再次,运用注意力机制获取并优化最重要的特征;最后使用softmax分类器对识别结果进行分类。仿真实验结果表明,CLA-net模型在UCI HAR和DaLiAc数据集上的准确率分别达到95.35%、99.43%,F1值分别达到95.35%、99.43%,均优于对比实验模型,有效提高了识别精度。

关 键 词:深度学习;行为识别;卷积神经网络;长短期记忆网络;注意力机制
收稿时间:2022-06-25
修稿时间:2023-01-10

Human Action Recognition Based on fusion of Attention Mechanism and CNN-LSTM
Wu Donghui,Xu Jing,Chen Jibin,Sun Yanxi,Qiu Sen. Human Action Recognition Based on fusion of Attention Mechanism and CNN-LSTM[J]. Science Technology and Engineering, 2023, 23(2): 681-689
Authors:Wu Donghui  Xu Jing  Chen Jibin  Sun Yanxi  Qiu Sen
Affiliation:College of Building Environment Engineering, Zhengzhou University of Light Industry; School of Control Science and Engineering, Dalian University of Technology
Abstract:In order to solve the problem that a single convolutional neural network (CNN) lacks the use of sequential information and a single recurrent neural network (RNN) cannot fully grasp the local information, a deep learning model (CLA-net) that integrates attention mechanism and spatiotemporal network is proposed for human activity recognition. First, the local features are extracted by the strong learning ability of CNN. Secondly, the temporal sequence information is extracted by using the long short-term memory network (LSTM). Thirdly, the most important features are obtained and optimized by the attention mechanism, and finally use the softmax classifier to classify the recognition results. The simulation results show that the accuracy of CLA-NET model on UCI HAR and DaLiAc data sets reaches 95.35% and 99.43% respectively, and the F1 value reaches 95.35% and 99.43% respectively. All of them are better than the comparative experimental model proposed in this paper, and the recognition accuracy is effectively improved.
Keywords:deep learning   action recognition   convolutional neural network   long and short term memory network   attention mechanism
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号