摘 要: | 滑出时间是评估大型机场场面运行效率的主要性能指标,科学准确地预测离港航空器的滑出时间,对于提升场面运行效率至关重要。首先,分析了航空器滑出时间影响因素及相关性,构建了基于BP神经网络的航空器滑出时间预测模型。针对BP神经网络存在对初始权值和阈值敏感、准确性和稳定性欠佳等缺点,分别采用粒子群算法和麻雀搜索算法获取BP神经网络的最优权值和阈值,并采用我国中南某枢纽机场2周的实际运行数据对智能算法优化后的预测模型进行了验证。结果表明:①滑出时间与半小时平均滑出时间、起飞队列长度、同时段滑行的离港航空器数量均有强相关性,与同时段滑入的进港航空器数量中度相关,与滑行距离和经过冲突热点区域个数相关性较弱;②考虑强相关和中度相关影响因素的4元组合预测模型的预测结果最佳;③智能优化算法通过获取神经网络的局部最优权重和阈值,可有效地提升航空器滑出时间预测结果的精度,但运算过程耗时也更长;④基于PSO优化后的BP神经网络预测结果较优化前的MAPE提升了1.13%,MAE减少了4.48s,RMSE减少了4.68s;基于SSA优化后的BP神经网络预测结果较优化前的MAPE提升了3.05%,MAE减少了16.55s,RMSE减少了14.32s。
|