摘 要: | 为了对电力物联网背景下的海量负荷数据进行精细化分析,从中提取用电模式,提出一种基于Hadoop分布式并行计算的混合神经网络分类模型。首先,基于时间维度的一维卷积神经网络(1DCNN)搭建“负荷特征提取器”;其次,使用长短期记忆网络(LSTM)搭建“序列分类器”;最后,将该“混合神经网络分类方法”在Hadoop平台上搭建,实现算法的并行化运行,以适用于海量负荷曲线的高效辨识。使用标准时序数据与真实负荷数据测试该方法的分类性能,算例结果表明所提分类方法具有较高的分类精度,经并行化处理后有效提高了负荷数据的处理效率。
|