首页 | 本学科首页   官方微博 | 高级检索  
     

自然数不同因子分解的数目的界
作者姓名:曹惠中
作者单位:山东大学数学系 济南250100
摘    要:设f(n)表示分解自然数n(>1)为大于1的整数因子乘积的所有方式的数目,此处不计因子的顺序。并且设f(1)=1。近年来,这个数论函数的上界估计得到不断的改进。1983年Hughes和Shallit证明了f(n)≤2n~(2~(1/2))。1987年陈小夏证明了f(n)≤n。1989年陈文立证明了f(n)≤(1/4)n+1。本文得到下面的

关 键 词:标准分解式 自然数 因子分解
收稿时间:1992-03-06
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《科学通报》浏览原始摘要信息
点击此处可从《科学通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号