首页 | 本学科首页   官方微博 | 高级检索  
     

带有点源的非线性抛物方程解的淬灭
引用本文:杜清岭,周玉霞,黄臣程. 带有点源的非线性抛物方程解的淬灭[J]. 四川师范大学学报(自然科学版), 2012, 0(2): 240-243
作者姓名:杜清岭  周玉霞  黄臣程
作者单位:重庆邮电大学移通学院数理教学部;四川农业大学数学系;重庆大学光电工程学院
基金项目:重庆市科委自然科学基金(2010BB9218)资助项目;重庆大学"211"工程三期创新人才培养计划建设项目(S-09110)
摘    要:关于非线性抛物方程解的淬灭以及带点源的抛物方程的爆破问题的研究具有重要的物理意义.对带点源的非线性抛物方程解的淬灭现象进行研究,利用上下解和比较原理的方法给出了这类带有点源的非线性抛物方程解的整体存在和淬灭的充分条件;并证明了在一定初值条件下原点是唯一的淬灭点;最后给出了方程解的淬灭率.

关 键 词:淬灭  点源  淬灭率

Quenching for a Nonlinear Parabolic Equation with Localized Source
DU Qing-ling,ZHOU Yu-xia,HUANG Chen-cheng. Quenching for a Nonlinear Parabolic Equation with Localized Source[J]. Journal of Sichuan Normal University(Natural Science), 2012, 0(2): 240-243
Authors:DU Qing-ling  ZHOU Yu-xia  HUANG Chen-cheng
Affiliation:1.Department of Mathematics and Physics,College of Mobile Telecommunications,Chongqing University of Posts and Telecom,Chongqing 400044; 2.Department of Mathematics,Sichuan Agricultural University,Ya’an 625014,Sichuan; 3.College of Optoelectronic Engineering,Chongqing University,Chongqing 400044)
Abstract:The problem on quenching and blow-up for nonlinear parabolic equation has been researched by worldwide scholars,which have a significant physical background.Finite-time quenching for a nonlinear parabolic equation with localized source under the Dirichlet boundary condition is introduced in this paper.The sufficient condition for quenching and the existence of global solution is obtained by comparison principle.Under some initial conditions,the uniqueness quenching point of the solution is proved.Finally,the quenching rate is shown.
Keywords:quenching  point source  quenching rate
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号