摘 要: | 对话状态跟踪(Dialogue State Tracking, DST)是任务型对话系统的核心模块,主要实现在对话过程中跟踪用户意图的功能。为了提升对话状态跟踪在跨领域场景下的性能,本文提出了一种基于BERT(Bidirectional Encoder Representation from Transformers)模型的对话状态跟踪方法,该方法考虑了领域与槽之间的相关性,让模型在对话过程中学习领域信息,并使领域信息参与到槽值的生成过程之中。我们在两个跨领域的任务型对话数据集上进行了综合实验,包括中文数据集CrossWOZ和英文数据集MultiWOZ 2.4,模型在CrossWOZ和MultiWOZ 2.4中分别取得了63.51%和70.17%的联合目标准确率。实验结果表明,本文提出的方法在跨领域场景下有较高的性能表现。
|