首页 | 本学科首页   官方微博 | 高级检索  
     


Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation
Authors:Jiang Qiu-Xing  Wang Da-Neng  MacKinnon Roderick
Affiliation:Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, New York 10021,USA.
Abstract:Voltage-dependent ion channels serve as field-effect transistors by opening a gate in response to membrane voltage changes. The gate's response to voltage is mediated by voltage sensors, which are arginine-containing structures that must move with respect to the membrane electric field. We have analysed by electron microscopy a voltage-dependent K(+) channel from Aeropyrum pernix (KvAP). Fab fragments were attached to 'voltage sensor paddles' and identified in the electron microscopy map at 10.5 A resolution. The extracellular surface location of the Fab fragments in the map is consistent with the membrane-depolarized, open conformation of the channel in electrophysiological experiments. Comparison of the map with a crystal structure demonstrates that the voltage sensor paddles are 'up' (that is, near the channel's extracellular surface) and situated at the protein-lipid interface. This finding supports the hypothesis that in response to changes in voltage the sensors move at the protein-lipid interface rather than in a gating pore surrounded by protein.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号