竞赛图中给定长度的点不相交的圈 |
| |
引用本文: | 梁娟娟,李瑞娟. 竞赛图中给定长度的点不相交的圈[J]. 云南民族大学学报(自然科学版), 2018, 0(1): 43-48 |
| |
作者姓名: | 梁娟娟 李瑞娟 |
| |
作者单位: | 山西大学数学科学学院; |
| |
摘 要: | 对Lichiardopol提出的猜想,给定正整数q≥3,r≥1,在竞赛图T中,若最小出度δ+(T)≥(q-1)r-1,则在T中至少存在r个点不相交的q圈.证明了当r≤3时,这个猜想的正确性.
|
关 键 词: | 竞赛图 点不相交的圈 最小半度 最小出度 |
Vertex-disjoint cycles of prescribed length on tournaments |
| |
Affiliation: | ,School of Mathematical Sciences,Shanxi University |
| |
Abstract: | Lichiardopol conjectures that for any given positive integers q ≥3 and r ≥1,any tournament T of the minimum out-degree at least(q-1) r-1 contains at least r vertex-disjoint q-cycles. We have proved that this conjecture is true in the special case when r≤3. |
| |
Keywords: | tournament vertex-disjoint cycles minimum semi-degree minimum out-degree |
本文献已被 CNKI 等数据库收录! |
|