首页 | 本学科首页   官方微博 | 高级检索  
     

基于5阶细胞神经网络图像浮雕算法研究
引用本文:汪乐乐,李国东. 基于5阶细胞神经网络图像浮雕算法研究[J]. 云南民族大学学报(自然科学版), 2018, 0(1): 75-80
作者姓名:汪乐乐  李国东
作者单位:新疆财经大学应用数学学院;
摘    要:针对如何使图像中的浮雕效果更具有立体感的问题,设计了关于图像的5阶细胞神经网络(CNN)的浮雕算法研究的方案,研究了该算法对于图像的立体化处理的过程,对于同一图像分别采用5阶CNN、3阶CNN算法和拉普拉斯算法进行对图像的立体化处理,并比较了几类算法的优劣.实验表明,基于5阶CNN浮雕算法更接近现实,直观效果更好,在实现图像的实时处理中,能够有效地生成具有艺术效果的浮雕图像.同时,将其应用在遥感图像的处理工作中,取得了很好的效果.

关 键 词:CNN  浮雕算法  拉普拉斯算法

A study of the fifth-order CNN relief algorithm
Affiliation:,School of Applied Mathematics,Xinjiang University of Finance and Economics
Abstract:A new method named the fifth-order CNN relief algorithm is proposed,aiming at making the relief effect in the image more three-dimensional and revealing the relevant process. This research treats the same image by using the fifth-order CNN algorithm,the third-order CNN algorithm and the Laplace algorithm respectively,and compares their strengths and weaknesses. It concludes that this new algorithm can better reflect the truth,and produce better relief images with good artistic effects. Meanwhile,it will also produce good effects when applied to the remote-sensing images.
Keywords:CNN  the color relief algorithm  Laplace algorithm
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号