首页 | 本学科首页   官方微博 | 高级检索  
     

非匀速动态裂纹应力强度因子的边界元算法
引用本文:周志宏,王波,姚振汉. 非匀速动态裂纹应力强度因子的边界元算法[J]. 清华大学学报(自然科学版), 1999, 39(11): 2
作者姓名:周志宏  王波  姚振汉
作者单位:清华大学,工程力学系,北京,100084
摘    要:为了精确计算动态裂纹扩展时的裂纹应力强度因子,在Fedelinski提出的时域对偶边界元法的基础上,将函数变换引入到弱奇异积分中,提高了弱奇异积分的精度,并将时域对偶边界元法应用到非匀速的裂纹扩展中,建立了裂纹非匀速扩展的边界元格式,进行了计算。将计算结果与根据文献数据对裂纹作的弹塑性有限元分析,及在此基础上模拟焦散法(caustics)所得的结果作了比较,两者符合得较好,说明边界元法在分析动态裂纹扩展中有很好的应用前景。

关 键 词:边界元法  动态裂纹扩展  数值模拟  有限元法  应力强度因子
修稿时间:1998-12-17

DSIF computation of dynamic crack growth with non-uniform velocity by TDBEM
ZHOU Zhihong,WANG Bo,YAO Zhenhan. DSIF computation of dynamic crack growth with non-uniform velocity by TDBEM[J]. Journal of Tsinghua University(Science and Technology), 1999, 39(11): 2
Authors:ZHOU Zhihong  WANG Bo  YAO Zhenhan
Abstract:To compute Dynamic Stress Intensity Factors (DSIF) of dynamic crack growth with non uniform velocity accurately on the basis of Time domain Dual Boundary Element Method(TDBEM), the accuracy of numerical integration has been improved by introducing function transformation into weakly singular integration, and the method has been applied to non uniform velocity dynamic crack growth. The comparison of calculation results by Boundary Element Method with those data given by Papadopoulos and analyzed by using elastic plastic finite element method and by simulating the caustics method shows that they are consistent. It can be concluded that the proposed method is prospective in application to dynamic crack growth.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号