首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的高技术装备制造业供应风险预测模型
引用本文:石春生,孟大鹏. 基于SVM的高技术装备制造业供应风险预测模型[J]. 系统工程与电子技术, 2010, 32(8): 1667-1671. DOI: 10.3969/j.issn.1001-506X.2010.08.24
作者姓名:石春生  孟大鹏
作者单位:(哈尔滨工业大学管理学院, 黑龙江 哈尔滨 150001)
基金项目:国家自然科学基金,航天创新基金 
摘    要:通过对高技术装备制造业与供应商合作中供应风险的相关因素进行识别,确定了供应风险预测的指标体系。运用支持向量机(support vector machine, SVM)等数据挖掘方法和Libsvm(a library for support vector machine)技术建立了供应风险的预测模型。案例研究表明,预测模型的均方误差、平均差、整群剩余系数和确定系数等评价指标皆显现出较好的模拟效果,且系统误差不显著。预测模型在高技术装备制造企业供应风险管理的实践中具有较好的适用性和准确度。

关 键 词:高技术装备制造业  供应风险  预测模型  支持向量机

Supply risk prediction model of high-tech equipment manufacturing industry based on SVM
SHI Chun-sheng,MENG Da-peng. Supply risk prediction model of high-tech equipment manufacturing industry based on SVM[J]. System Engineering and Electronics, 2010, 32(8): 1667-1671. DOI: 10.3969/j.issn.1001-506X.2010.08.24
Authors:SHI Chun-sheng  MENG Da-peng
Affiliation:(School of Management, Harbin Inst. of Technology, Harbin 150001, China)
Abstract:Relevant factors of supply risk between high-tech equipment manufacturing industry and suppliers are identified to set up the supply risk predicting index system. On this basis, the supply risk predicting model is established with support vector machine (SVM) approach and Libsvm (a library for support vector machine) technology. The case study shows that all the model’s evaluation coefficients such as mean square error (MSE), mean difference between measurement and simulation (MD), coefficient of residual mass (CRM) and coefficient of determination (CD) show good simulation result, and the system error is not significant. The supply risk predicting model has good suitability and accuracy in supply risk management.
Keywords:high-tech equipment manufacturing industry  supply risk  prediction model  support vector machine
本文献已被 万方数据 等数据库收录!
点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号