首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类分析和神经网络的高炉焦比预测模型
引用本文:周洋,余文武,董相娟,张军红. 基于聚类分析和神经网络的高炉焦比预测模型[J]. 鞍山科技大学学报, 2010, 0(3)
作者姓名:周洋  余文武  董相娟  张军红
作者单位:辽宁科技大学材料科学与冶金学院;
摘    要:为降低高炉生产焦炭的消耗,对高炉操作参数和燃料比指标进行关联性分析,提出了一种组合聚类分析与神经网络进行高炉焦比指标预测的方法。聚类分析将数据集聚划分为几类,数据的相似度比较高,分类训练相应的神经网络模型,实现高炉焦比指标的预测。结合聚类分析构建的神经网络模型,用某高炉生产数据进行仿真学习,并跟传统的神经网络模型进行比较。结果表明,加入聚类分析的神经网络模型平均绝对误差降低3.13 kg/t,平均相对误差降低5.19%。

关 键 词:聚类分析  神经网络  预测  高炉  焦比  

A prediction model for blast furnace coke ratio with clustering analysis and neural network
ZHOU Yang,YU Wen-wu,DONG Xiang-juan,ZHANG Jun-hong. A prediction model for blast furnace coke ratio with clustering analysis and neural network[J]. Journal of Anshan University of Science and Technology, 2010, 0(3)
Authors:ZHOU Yang  YU Wen-wu  DONG Xiang-juan  ZHANG Jun-hong
Affiliation:ZHOU Yang,YU Wen-wu,DONG Xiang-juan,ZHANG Jun-hong(School of Material Science and Metallurgy,University of Science and Technology Liaoning,Anshan 114051,China)
Abstract:In order to reduce the coke consumption of blast furnace,a relevance analysis is carried out for operation parameters and fuel ratio of blast furnce,and a prediction method that is combining clustering analysis and neural network for coke ratio of blast furnace is proposed.The data cluster is divided into seveval classes by clustering analysis,the data similarity is high,and the neural network model is used to realize the prediction of coke ratio.By combining the neural network with clustering analysis,the ...
Keywords:clustering  neural network  prediction  blast furnace  coke ratio  
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号