首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF人工神经网络的电动机振动故障诊断
引用本文:葛 强,徐俩俩,仇宝云,谈 磊,唐建军. 基于RBF人工神经网络的电动机振动故障诊断[J]. 河海大学学报(自然科学版), 2008, 36(6): 842-845. DOI: 10.3876/j.issn.1000-1980.2008.06.025
作者姓名:葛 强  徐俩俩  仇宝云  谈 磊  唐建军
作者单位:扬州大学能源与动力工程学院,江苏,扬州,225009
基金项目:国家自然科学基金,全国百篇优秀博士论文专项课题,扬州大学创新培育基金,扬州大学大学生学术科技创新基金
摘    要:针对电动机转子不平衡、不对中、油膜涡动、转子径向碰摩、喘振、轴承座松动等常见的几种振动故障,用RBF网络对提取出的6种故障信息进行分类,判断故障类型,并进行了仿真试验,最后将试验结果与BP网络的诊断结果进行了详细的分析比较.结果表明,RBF网络可以应用于电动机转子振动故障诊断,其诊断速度比BP神经网络快,诊断结果也更为准确.

关 键 词:RBF网络  电动机  振动  故障诊断
修稿时间:2008-11-27

Fault diagnosis of vibration of motors based on RBF neural network
GE Qiang,XU Liang-liang,QIU Bao-yun,TAN Lei,TANG Jian-jun. Fault diagnosis of vibration of motors based on RBF neural network[J]. Journal of Hohai University (Natural Sciences ), 2008, 36(6): 842-845. DOI: 10.3876/j.issn.1000-1980.2008.06.025
Authors:GE Qiang  XU Liang-liang  QIU Bao-yun  TAN Lei  TANG Jian-jun
Abstract:There are 6 familiar vibration faults of asynchronous motors: rotor imbalance,non-aligning,oil swirl,radial friction,surge and flexible bearing bracket.The extracted features were classified by use of the RBF neural network, and their fault types were diagnosed and simulated.The simulated results were compared with those of the BP neural network.The results show that the RBF neural network can be applied in the diagnosis of vibration faults of motors,the diagnosis is feasible,fast and exact.
Keywords:RBF neural network  motor  vibration  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《河海大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《河海大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号